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Abstract

We present and analyze an iterative method for approximating the Karcher
mean of a set of n×n positive definite matrices Ai, i = 1, . . . , k, defined as the
unique positive definite solution of the matrix equation

∑k
i=1 log(A−1

i X) = 0.
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1. Introduction

Averaging real symmetric positive definite matrices is an important prob-
lem arising when one has to represent, through a single matrix G, the results
of several experiments made up by a set of many n × n positive matrices
A1, . . . , Ak (throughout the paper when we speak of positive matrices, we
refer to real symmetric positive definite matrices). This problem appears,
for instance, in applications to elasticity [14], radar signal processing [2, 11],
medical imaging [3, 9, 15] and image processing [16].

In these applications, the straightforward choice for G, that would be the
arithmetic mean of A1, . . . , Ak, does not satisfy some expected properties or
gives poor results. In elasticity, for instance, one of the properties required
from the matrix mean G is that the mean of A−1

1 , . . . , A−1
k , must coincide with

G−1 [14]. Among the classical means of positive real numbers a1, . . . , ak, this
property is satisfied by the geometric mean g = (a1 · · · ak)1/k, which justifies
the need of defining a suitable geometric mean of positive matrices.
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To this end it has proved useful the Riemannian structure on the set Pn of
positive matrices given by the scalar product g(M,N) = trace(A−1MA−1N)
at the tangent space to Pn at the point A. This structure makes Pn a com-
plete Riemannian manifold with negative curvature [5] in which the dis-
tance between two positive matrices A and B turns out to be δ(A,B) :=
‖ log(A−1/2BA−1/2)‖F , where the norm used is the Euclidean or Frobenius
norm ‖A‖F := (

∑
ij a

2
ij)

1/2.
In such spaces, every compact set has a unique center of mass (see [4,

Section 6.1.5]). The geometric mean of k positive matrices, A1, . . . , Ak, can
be defined as their center of mass, that is the unique minimizer (over Pn) of

f(X) =
k∑
i=1

δ2(Ai, X). (1)

This is, for instance, the definition of geometric mean of positive matrices
given by Moakher [13], Bhatia and Holbrok [6].

The center of mass of k matrices A1, . . . , Ak in Pn has been proved by
Moakher [13, Prop. 3.4] to be the unique positive definite solution of the
matrix equation

k∑
i=1

log(A−1
i X) = 0, (2)

which can be rewritten in the different forms

k∑
i=1

log(XA−1
i ) = 0,

k∑
i=1

log(X1/2A−1
i X1/2) = 0, (3)

using the formula M−1 log(K)M = log(M−1KM), valid for any invertible
matrix M and any matrix K having real positive eigenvalues (see [10]).

The unique positive solution G of (2) is referred to as “least square geo-
metric mean” [6], or “Riemannian geometric mean” [13], or, more frequently,
“Karcher mean” [2, 12]. For this reason we call equation (2) Karcher equa-
tion. For k = 2 we recover G = A(A−1B)1/2, that is the usual definition of
geometric mean of two matrices. For k > 3 such an explicit formula is not
known.

In this paper, we focus on the numerical solution of the Karcher equation
for k > 3. Some numerical methods have been introduced in the literature:
one approach considered in [14] is to solve the Karcher equation by a fixed
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point iteration, unfortunately, this iteration lacks convergence in certain ex-
amples. Another approach is to use optimization algorithms on the objective
function (1), like the Newton method or the steepest descent in a Rieman-
nian manifold (see [1]). In particular, a gradient descent algorithm can be
written as

X0 ∈ Pn, Xν+1 = Xν exp

(
−ϑν

k∑
i=1

log(A−1
i Xν)

)
, (4)

for some step-length ϑν > 0. The latter iteration has been considered in
[12, 15] with X0 = A1 or X0 = I and ϑν = 1

k
; with this choice iteration (4)

lacks convergence for certain data A1, . . . , Ak. The same iteration has been
considered also in [2, 16] but with no comments on the choice of the initial
value and of the step-length.

In principle, one could choose ϑν in iteration (4) using a line search strat-
egy, but the computation of the optimal ϑν seems to be too expensive, while
heuristic strategies for the step-length [9] may lead to slow convergence in a
large number of cases.

Our approach is to consider a linearization of iteration (4) in the spirit of
the Richardson iteration, namely,

Xν+1 = Xν − ϑXν

k∑
i=1

log(A−1
i Xν), (5)

where ϑ > 0 is a suitable parameter. Any solution of equation (3) is a fixed
point of equation (5). The above recursion can be equivalently rewritten as

Xν+1 = Xν − ϑX1/2
ν

k∑
i=1

log
(
X1/2
ν A−1

i X1/2
ν

)
X1/2
ν , (6)

provided that all the iterates Xν are positive. Equation (6) shows that if Xν

is real symmetric then Xν+1 is still real symmetric.
We prove that if ϑ is small enough, the sequence {Xν} generated by

(6) starting from X0 in a suitable neighborhood of G, is formed by positive
matrices and converges to G, and through a first order analysis we provide
a bound to the convergence rate. In particular, we show that the local
convergence of the iteration is linear for small values of the positive parameter
ϑ and that if the matrices X0, A1, . . . , Ak pairwise commute and ϑ = 1/k,
then the convergence is at least quadratic.
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In the general case, we provide an optimal value of the parameter ϑ
which guarantees local convergence of (6), related to the condition numbers of
Mi = G1/2A−1

i G1/2, i = 1, . . . , k. We show that the closer are the eigenvalues
of Mi to 1, the faster is the convergence.

Thus, if X0 is close enough to the solution G and positive then the se-
quence {Xν} is well defined, i.e., Xν is positive for each ν, and converges
to G. Indeed, there are cases where starting from a given X0, the first iter-
ate X1 is not positive definite. In order to overcome this drawback it may
be convenient to consider also the sequence generated by (4) which shares
with (6) the same convergence properties, namely local convergence for the
optimal value found for (6). In fact, it can be shown that the matrices Xν

generated by (4) are positive if X0 is positive.
We implemented the iterations (6) and (4) and tested their performances

on some test problems made up by k-tuples of positive definite matrices
A1, . . . , Ak, normalized so that their spectral radius ρ(Ai) = 1, with the
initial approximation X0 chosen in the set {I,Garith, Gcheap} where Garith is
the arithmetic mean of A1, . . . , Ak, Gcheap is the “Cheap” mean introduced in
[8]. Moreover, we provide a strategy for an automatic choice of the parameter
ϑ.

The numerical experiments confirm the theoretical analysis and point
out the effectiveness of the technique for the automatic choice of the optimal
value of the parameter ϑ. In fact, there are cases where the iteration with
the value ϑ = 1/k does not converge or needs a huge number of steps to
provide a reasonable approximation to G, while with the optimal value of
ϑ, convergence always occurs in practice and the number of steps needed for
convergence is reasonably small if starting with X0 = Gcheap.

The paper is organized as follows: in Section 2 we provide the convergence
analysis of iteration (6), state our main Theorem 1, analyze the choice of the
optimal value of ϑ and comment on iteration (4). In Section 3 we provide
the proof of Theorem 1. In Section 4 we discuss some issues related to the
implementation and report the results of the numerical experiments that we
have performed. Section 5 draws the conclusions.

We complete this section by recalling the definition of functions of diag-
onalizable matrices which we use frequently in the paper. Let A ∈ Cn×n be
diagonalizable, that is, A = MDM−1, where D = (dij) is diagonal, and f(x)
is a function, then f(A) := Mf(D)M−1, where f(D) is a diagonal matrix
whose diagonal elements are f(dii), for i = 1, . . . , n. If f(x) is a multivalued
function then the same branch of f must be taken for repeated eigenvalues.
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2. Solving the Karcher equation

In this section we design a method for approximating the Karcher mean
as a solution of the Karcher equation (2) relying on iteration (6). We pro-
vide a convergence analysis of iteration (6) which shows that the sequence
Xν , ν = 0, 1, . . ., generated by our method has global quadratic convergence
if the matrices X0, Ai, i = 1, . . . , k, pairwise commute, and local linear con-
vergence otherwise, if ϑ is suitably chosen. We provide an explicit expression
which relates the convergence factor to the condition numbers of the matrices
G−1/2AiG

−1/2.
For the sake of notational simplicity let us define

ϕ(X) = X − ϑX1/2

k∑
i=1

log
(
X1/2A−1

i X1/2
)
X1/2 = X − ϑX

k∑
i=1

log(A−1
i X),

so that the iteration (6) can be rewritten as Xν+1 = ϕ(Xν). For X positive
definite, denote X ′ = ϕ(X).

The scalar case, where the size n of the matrices is 1, can be handled
directly, in fact the function ϕ(X) has the unique positive fixed point G =
(A1 · · ·Ak)1/k and ϕ′(G) = 1 − kϑ. Thus, there is local convergence for
0 < ϑ < 2/k, and the convergence is superlinear for ϑ = 1/k.

In order to study the local convergence of (6) in the general case we need
to introduce some notation. We denote by G the Karcher mean of A1, . . . , Ak,
i.e., the unique positive solution of equation (2), or, equivalently, the unique
positive matrix such that ϕ(G) = G. Set X = G+ E, X ′ = ϕ(X) = G+ E ′

and denote Ê = G−1/2EG−1/2, Ê ′ = G−1/2E ′G−1/2. Similarly, define the
approximation error at step ν as the matrix

Êν = G−1/2EνG
−1/2 = G−1/2XνG

−1/2 − I, Eν = Xν −G.

The vector counterparts of these quantities are defined as êν = vec(Êν),

ê = vec(Ê), ê′ = vec(Ê ′), where vec(·) is the operator which transforms a
matrix into a long vector by stacking its columns.

For i = 1, 2, . . . , k, define the following:

Mi = G1/2A−1
i G1/2,

Wi = log(Mi)⊗ I − I ⊗ log(Mi),
Hi = f(Wi), f(x) = x/(ex − 1),

(7)
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and H =
∑k

i=1 Hi, where the function f(x) = x/(ex − 1) is extended by
continuity at x = 0 by f(0) = 1. Observe that the matrices Mi are positive
definite. Moreover, since f(x) is positive and Wi is symmetric, also the
matrices Hi are positive definite together with H.

The following result provides the Fréchet derivative of the function ϕ(X).
If not differently specified, ‖ · ‖ denotes the 2-norm (Euclidean norm) of a
vector and the induced matrix norm. Observe that for a matrix A ∈ Cn×n,
it holds that ‖A‖F = ‖ vec(A)‖.

Theorem 1. For H =
∑k

i=1Hi, the matrix I − ϑH represents the Fréchet
derivative of ϕ(X) at G, that is,

ê′ = (I − ϑH)ê+O(‖ê‖2).

The proof of the above theorem is rather technical and is postponed to
Section 3. Here we observe that, since the matrix H is positive definite, there
exists ϑ0 > 0 such that the spectral radius ρ(I−ϑH) < 1 for any 0 < ϑ < ϑ0.

This property enables us to prove the following convergence result which
also provides an explicit representation of the linear part of the error êν+1 as
function of êν .

Theorem 2. Let ϑ0 be such that the spectral radius ρ(I − ϑH) 6 λ < 1 for
0 < ϑ < ϑ0. Then there exists ε > 0 such that for any symmetric matrix X0

with ‖Ê0‖F < ε the sequence {Xν} generated by (6) is such that limν Xν = G
and

êν+1 = (I − ϑH)êν +O(‖êν‖2),

i.e., the iteration (6) is locally convergent to G.

Proof. Since I − ϑH is symmetric positive definite for 0 < ϑ < ϑ0, for the
matrix norm induced by the vector norm ‖ · ‖ it holds that ‖I − ϑH‖ =
ρ(I − ϑH) =: λ < 1. Therefore, in the view of Theorem 1, one has ‖ê′‖ 6
λ‖ê‖ + σ‖ê‖2 for a suitable constant σ > 0. In this way, if ε is such that
ε < (1− λ)/(2σ), then

λε+ σε2 < µε < ε, µ =
1 + λ

2
< 1,

and all the symmetric matricesX0 in the neighborhood Uε = {X : ‖G−1/2XG−1/2−
I‖F < ε} of G are positive definite and such that for any X ∈ Uε one has
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ϕ(X) ∈ Uε. That is, the sequence Xν is well defined. Moreover, from the in-
equality ‖ê‖ 6 µ‖ê‖, which is valid for any X ∈ Uε, one inductively deduces
that ‖êν‖ 6 µ‖êν−1‖ 6 µν‖ê0‖ which yields limν ‖êν‖ = 0. �

Here we want to comment on the consequences of this result which is at
the basis of an adaptive algorithm for the computation of G provided later
on.

Observe that the eigenvalues of Hi can be explicitly given in terms of the
eigenvalues λ

(i)
1 , . . . , λ

(i)
n , of Mi. In fact, the eigenvalues of Wi are given by

log(λ
(i)
r /λ

(i)
s ), for r, s = 1, . . . , n, so that the eigenvalues of Hi are simply

µ(i)
r,s = f(log(λ(i)

r /λ
(i)
s )).

Since the function f(x) = x/(ex − 1) is decreasing, then the minimum
and the maximum eigenvalues of Hi are

µ
(i)
min =

log(ci)

ci − 1
, µ(i)

max = ci
log(ci)

ci − 1
,

where ci = λ
(i)
max/λ

(i)
min is the condition number of the matrix Mi.

Observe that, since for symmetric matrices X, Y with eigenvalues ξj
and ηj, respectively, the eigenvalues of X + Y are in the range [min ξj +

min ηj,max ξj + max ηj], one deduces that the eigenvalues of H =
∑k

i=1Hi

are in the range

[β, γ] := [
k∑
j=1

log(cj)

cj − 1
,

k∑
j=1

cj
log(cj)

cj − 1
]. (8)

The above expression implies that the optimal choice of the parameter ϑ
in the iteration (6) is

ϑ = 2/(γ + β) = 2/
k∑
j=1

cj + 1

cj − 1
log cj (9)

and the spectral radius of I−ϑH which provides the convergence rate of the
iteration is such that

ρ(I − ϑH) 6
γ − β
γ + β

=

∑k
j=1 log cj∑k

j=1
cj+1

cj−1
log cj

. (10)
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Theorem 2 enables us to analyze the convergence speed in the case where
the matrices Ai commute, i.e., AiAj = AjAi or in the case where ||AiAj −
AjAi|| or ||Ai − Aj|| is small.

Consider the case where the matrices commute and where also X0 com-
mutes with them (e.g., X0 = I). Then, from the fact that vec(AEB) =
(B⊗A)vec(E), vec(BEA) = (A⊗B)vec(E), for real symmetric matrices A,
B, the condition AEB = BEA implies that we can move from left to right
the matrices appearing in a Kronecker product. This fact enables us to write
Hiêν = f(Wi)êν = f(0)êν = êν so that Hêν = kêν . Therefore, from Theorem
2 and (7) one has êν+1 = (1 − kϑ)êν + O(‖eν‖2) and the choice ϑ = 1/k
provides the optimal value for ϑ which yields a convergence speed at least
quadratic since, in this case

‖eν+1‖ = O(‖eν‖2).

A similar analysis can be carried out if ||Ai − Aj|| is “small”. Here we
provide some “qualitative” comments to point out the behavior of the con-
vergence and leave the “quantitative” analysis to the reader. If ‖Ai −Aj‖ is
small, then also ||Ai − G|| is small and the matrices Mi = G1/2A−1

i G1/2 are
close to the identity matrix. Therefore their condition number ci is close to
1, log ci is close to 0 as well as the bound ρ(I − ϑH) of (10), moreover, the
values of γ and β are close to k. Therefore, the choice ϑ = 1/k provides a
small bound to the spectral radius ρ(I − ϑH). In this case we expect a very
fast convergence even though linear.

A different behavior may be encountered in the case where the matrices
Ai almost commute, i.e., if ‖AiAj − AjAi‖ is small, but they are not close
to each other. In fact, in this case the iteration may fail to converge as the
following example shows. Choose the k matrices such that Ai differs from
a diagonal matrix by a small correction and the diagonal matrices are very
different. For instance, consider k = n matrices of size n with diagonal entries
(1, d, d2, . . . , dn−1) and all its cyclic permutations, where 0 < d < 1 is a small
positive value. After one step with ϑ = 1/n, the error is expected to be of the
order of the perturbation, but in the subsequent steps the error may start to
increase and even to diverge. In this case G is close to σI, with σ = d(n−1)/2,
and the matrices G−1/2AiG

−1/2 have a large condition number close to 1/dn.
Therefore, in order to have convergence, a suitable value for ϑ ≈ 2/(n2 log d)
must be used. The numerical experiments performed in Section 4.1 confirm
this analysis.
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This proves that iteration (6) with ϑ = 1/k is not stable for commuting
matrices, since a small perturbation in the input may lead to divergence.
This example is only of theoretical interest, since for commuting matrices a
fair way to compute the Karcher mean is the direct evaluation of the formula
G = (A1A2 · · ·Ak)1/k.

2.1. Modifying the iteration

In this section we consider iteration (4), equivalently rewritten in a more
symmetric form as

Xν+1 = X1/2
ν exp

(
−ϑν

k∑
i=1

log(X1/2
ν A−1

i X1/2
ν )

)
X1/2
ν , (11)

which is a modification of (6) in the sense that the latter can be obtained from
the former by replacing the exponential function exp(t) with its linearization
1 + t. To be more precise, denoting R(X) =

∑k
i=1 log(X1/2A−1

i X1/2), one
has R(G) = 0 if G solves (6). On the other hand, since the difference

exp(R(X))− (I +R(X))

contains quadratic terms in the entries of R(X), the linear part of the error
Eν+1 obtained with (6) has the same form of the linear part obtained with
(11), therefore the same comments on the local convergence of (6) apply to
the iteration (11).

The iteration (11) still keeps the nice convergence properties of (6) but
avoids the possibility of breakdown to which (6) is prone if X0 is not cho-
sen appropriately. In fact, it is immediate to verify that the matrices Xν

generated by (11) are positive. Indeed, the modified iteration has a slightly
higher computational cost since at each step a matrix exponential has to be
computed.

Observe that in the scalar case, or in the case where X0 and Ai, i =
1, . . . , k, commute with each other then one step of iteration (11) provides
the geometric mean.

3. Proof of Theorem 2.1

Our proof relies on the Kronecker notation and on some well known prop-
erties of Fréchet derivatives of matrix functions (see [10, Chapter 3]). We
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denote the Fréchet derivative of the function f(x) at X in the direction E by
the symbol Lf (X,E) and we represent the linear operator Lf (X, ·) through
the matrix Kf (X) such that vec(Lf (X,E)) = Kf (X)vec(E).

By means of the following representation of the Fréchet derivative of the
exponential function (obtained using the commutativity on Theorem 10.13
of [10])

Kexp(Y ) = ψ(Y T ⊗ I − I ⊗ Y )(I ⊗ exp(Y )), ψ(t) =
et − 1

t
,

and applying the rule for the inverse of the Fréchet derivative, we get

Klog(X) = (I ⊗X−1)f(logXT ⊗ I − I ⊗ logX), (12)

where f(t) = t/(et − 1) for t 6= 0 and f(0) = 1. Recall that for the function
log, equation f(X + E) = f(X) + Lf (X,E) + o(‖E‖), holds with the term
o(‖E‖) replaced by O(‖E‖2).

We are ready to prove the following

Lemma 3. For the function ϕ(X) = X log(A−1X) it holds that

Lϕ(X,E) = E log(A−1X) +XLlog(A−1X,A−1E).

Moreover, Lϕ(X,E) admits the matrix representation

Kϕ(X) = log(XA−1)⊗ I + f(log((A−1X)T )⊗ I − I ⊗ log(XA−1)). (13)

Proof. Consider the functions g(X) = X and h(X) = log(A−1X). Applying
to ϕ = g · h the rule for the Fréchet derivative of a product we get

Lϕ(X,E) = E log(A−1X) +XLh(X,E), (14)

since Lg(X,E) = E. We may look at the function h(X) = log(A−1X) as
at the composition of the two functions log(X) and A−1X. In this way,
applying the chain rule for the Fréchet derivative, we get XLh(X,E) =
XLlog(A−1X,A−1E) which, together with (14) yields the required expression
for Lϕ(X,E).

Using (12) and the properties vec(AB) = (I⊗A)vec(B) = (BT⊗I)vec(A),
we get

Kϕ(X)vec(E) = (log(XA−1)⊗ I)vec(E) + (I ⊗X)vec(Llog(A−1X,A−1E))

=
(
log(XA−1)⊗ I + (I ⊗ A)f(log(A−1X)T ⊗ I − I ⊗ (A−1X))(I ⊗ A−1)

)
vec(E),
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which, moving I ⊗A and I ⊗A−1 inside the argument of f , leads to (13). �
By applying the above result to the function Φ(X) = I − ϑ

∑k
i=1 ϕi(X)

ϕi(X) = X log(A−1
i X), one obtains that the linear mapping LΦ(X,E) is

represented by the matrix

KΦ(X) = I − ϑ
k∑
i=1

log(XA−1
i )⊗ I

+ ϑ

k∑
i=1

f(log((A−1
i X)T )⊗ I − I ⊗ log(XA−1

i )).

Since
∑k

i=1 logGA−1
i = 0, one deduces that

KΦ(G) = I − ϑ
k∑
i=1

f(log(GA−1
i )⊗ I − I ⊗ log(GA−1

i )).

Whence, replacing GA−1
i by G1/2MiG

−1/2 yields

KΦ(G) = I−ϑ(G1/2⊗G1/2)

(
k∑
i=1

f(log(Mi)⊗ I − I ⊗ log(Mi))

)
(G−1/2⊗G−1/2).

This completes the proof of Theorem 1.

4. Implementation issues

The Richardson-like iteration (6) can be implemented in formally different
ways according to the equivalent formulae:

X = X − ϑX1/2
∑k

i=1 log(X1/2A−1
i X1/2)X1/2, G = X, (a)

X = X1/2
(
I − ϑ

∑k
i=1 log(X1/2A−1

i X1/2)
)
X1/2, G = X, (b)

Y = Y − ϑY 1/2
∑k

i=1 log(Y 1/2AiY
1/2)Y 1/2, G = Y −1, (c)

Y = Y 1/2
(
I − ϑ

∑k
i=1 log(Y 1/2AiY

1/2)
)
Y 1/2, G = Y −1. (d)

(15)

The cases (c) and (d) consist in applying the iteration (a) and (b) respec-
tively, for the computation of the mean of the inverse matrices A−1

i , and
then inverting the result. In this approach we reduce the number of matrix
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inversion to be performed and improve the numerical stability in the case
where the mean G is better conditioned than the matrices A1, . . . , Ak. In
our numerical tests we simply considered the implementation based on (15)
(a).

Yet another implementation which is numerically appealing uses the Cholesky
factorization of Xν , say Xν = RT

νRν ,

Xν+1 = Xν + ϑRT
ν

(
k∑
i=1

log(R−Tν AiR
−1
ν )

)
Rν . (16)

Since the condition number of the Cholesky factor of Xν in the spectral norm
is the square root of the condition number of Xν , we expect a good accuracy.
Moreover, expression (16) can be computed with a smaller computational
cost with respect to (15), since forming the Cholesky factor costs less than
forming the matrix square root [10].

In order to choose the optimal value of the parameter ϑ according to
the results of Section 2 we have to compute the values γ and β in equation
(8). This computation can be performed dynamically by means of (8), (9),
where cj = cond(G1/2A−1

j G1/2) can be approximated by replacing the matrix
G with the current approximation Xν . Once again, for the success of this
heuristic it is needed that X0 is a good approximation to G. For this reason,
choosing X0 equal to the Cheap mean is crucial.

A better evaluation of the optimal value of the parameter ϑ could be
performed by means of the evaluation of the largest and the smallest eigen-
values of the matrix obtained by H in (7) by replacing G with the current
iterate Xν . This computation can be performed by means of few steps of the
Lanczos method, where the computation of the matrix-vector product can
be performed with cost O(kn3) by exploiting the specific Kronecker structure
of H. The optimal value of ϑ is then computed as:

ϑ = 2/(µmax + µmin). (17)

In the next section we show by means of several numerical experiments
the effectiveness of our algorithms.

4.1. Numerical experiments

The first bunch of tests has been designed to demonstrate that starting
the iteration (6) in the form (15) (a), with X0 equal to the Cheap mean,
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defined as the common limit of the sequences {A(ν)
i }ν , i = 1, . . . , k, such that

A
(ν+1)
i = A

(ν)
i exp

(
1

k

k∑
j=1,j 6=i

log((A
(ν)
i )−1A

(ν)
j )

)
, i = 1, . . . , k, (18)

we can approximate the Karcher mean with much less iterations than starting
with X0 = I or with X0 = 1

k

∑k
i=1 Ai. Using the Cholesky factorization of

A
(ν)
i , iteration (18) can be rewritten in the form

A
(ν)
i = RTR, A

(ν+1)
i = RT exp

(
1

k

k∑
j=1,j 6=i

log(R−TA
(ν)
j R−1)

)
R, i = 1, . . . , k,

which leads to a different implementation where just functions of symmetric
matrices are computed. Table 1 reports the number of iterations obtained
with the different values of X0 and with the value of ϑ computed once for all
by means of (9) where G has been replaced by X0.

The iteration has been halted if the residual correction is less than 1.0e-11

or if it is not decreasing. The latter condition has never been encountered
in this set of tests. The dataset has been generated randomly with different
values of the condition number of the matrices Ai according to the following
Matlab commands:

n = 10; W = rand(n)− rand(n); X1 = W′ ∗ W;

X2 = X1− eye(n) ∗ t; X = X2/norm(X2, 2);

where the parameter t is chosen in such a way that the matrix X has a
given condition number cnd. In fact, the condition number of X is given by
cnd = (λ1−t)/(λn−t), provided that t < λn, where λ1, λn > 0 are the largest
and the smallest eigenvalues of X1, respectively. This way, it is sufficient to
choose t = (cndλn−λ1)/(cnd−1). This choice guarantees the nonsingularity
of X.

It is important to point out that the normalization that we have imposed
on our data, i.e., ‖X‖2 = 1, is no loss of generality. In fact, the Karcher
mean G(A1, . . . , Ak) of a set of positive definite matrices A1, . . . , Ak is such
that

G(α1A1, . . . , αkAk) = (α1 · · ·αk)1/kG(A1, . . . , Ak)

for any α1, . . . , αk > 0.
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cond=1.e2 cond=1.e4
k\X0 I AM Cheap I AM Cheap

3 74 (0.1) 26 (0.27) 17 (0.24) 114 (0.07) 89 (0.08) 41 (0.16)

4 66 (0.83) 21 (0.19) 17 (0.18) 82 (0.07) 59 (0.09) 37 (0.11)

5 65 (0.07) 19 (0.16) 16 (0.15) 87 (0.05) 58 (0.08) 35 (0.1)

6 62 (0.06) 20 (0.13) 16 (0.13) 81 (0.05) 54 (0.07) 31 (0.09)

7 61 (0.05) 21 (0.11) 15 (0.11) 83 (0.04) 63 (0.05) 29 (0.08)

8 61 (0.05) 20 (0.1) 15 (0.1) 93 (0.03) 55 (0.05) 29 (0.07)

9 58 (0.04) 19 (0.09) 14 (0.09) 89 (0.03) 50 (0.04) 29 (0.06)

10 56 (0.08) 19 (0.08) 14 (0.08) 94 (0.03) 47 (0.05) 28 (0.06)

Table 1: Number of iterations needed to approximate the Karcher mean up to the residual
1.e-11 by means of the iteration (15) (a), starting with the identity matrix, the arithmetic
mean and the Cheap mean. Between parentheses it is reported the value of ϑ computed
once for all by means of (9) with G replaced by X0.

We reported the case of n = 10, k = 3 : 10 for different values of the
condition number. It is evident the substantial reduction of the number of
steps obtained starting with the Cheap mean.

The second bunch of tests concerns an automatization for the choice of
ϑ. In this case we considered a set of n× n matrices A1, . . . , Ak, with k = n,
randomly generated in a neighborhood of radius ε for different values of ε and
of the condition number of the matrices. More precisely, after generating a
diagonal matrix A1 = diag(d1, . . . , dn), we generated the remaining matrices
by adding to A1 a nonnegative definite random perturbation of norm ε.

We implemented an adaptive version of the iteration with X0 equal to
the Cheap mean, where the parameter ϑ is chosen at each step by means of
equation (9). In these formulae, we have replaced the unknown matrix G by
the current approximation Xν .

We have implemented a version where the parameter ϑ is chosen by apply-
ing Lanczos method, and finally we have implemented a third version where
ϑ is chosen once for all by trying several values of ϑ, sampled at distance 0.01
and choosing the one which provides the minimum number of iterations.

Among the many tests performed we report only two cases which differ
for the condition number of the matrices. Table 2 reports the number of iter-
ations for different values of the radius ε in the two cases where n = 5 and the
center of the neighborhood of radius ε is A1 = diag(1, 10−1, 10−2, 10−4, 10−5)
and A1 = diag(1, 1/5, 1/10, 1/15, 1/20), respectively. It is interesting to point
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cond=1e5 cond=20

ε\ϑ 1/k (9) (17) samp. 1/k (9) (17) samp.

2e-1 * 39 28 22 6 6 6 5
1e-1 4533 34 30 19 5 5 4 4
1e-2 46 22 17 14 2 2 2 2
1e-3 28 20 14 12 1 1 1 1
1e-4 10 8 7 6 1 1 1 1

Table 2: Number of iterations needed to approximate the Karcher mean for matrices lying
in a neighborhood of radius ε with ϑ = 1/k and with the values for ϑ computed by means
of (9), (17) and by sampling.

out that in the first case, where the matrices are ill conditioned, with the
value ϑ = 1/5 the iteration fails to converge for ε = 0.2 and requires a large
number of iterations for ε = 0.1. A smaller value of ϑ computed with the
techniques described in the previous sections leads to a dramatic reduction
of the number of iterations.

In the case of well conditioned matrices, the optimal value of ϑ is close
to 1/k almost independently of the radius ε and the number of iterations is
negligible.

As a matter of fact, we have observed that starting with X0 equal to the
Cheap mean the value of ϑ computed by means of (9) does not change much
in the iterations. Therefore it is more convenient to compute this value once
for all.

Concerning the choice of ϑ, we observe that relying on Lanczos method
slightly reduces the number of iterations with respect to the choice based on
(9). Moreover, the value of ϑ obtained by sampling the number of iterations
and choosing the value which provides the minimum does not dramatically
reduce the number of iteration. Therefore, for practical computations, (9) is
a good balance between reducing the number of iterations and keeping a low
cost.

Finally, we have tested the convergence speed and the value of the param-
eter ϑ in the case where the matrices Ai, i = 1, . . . , k, are almost commuting,
i.e., ‖AiAj − AjAi‖ is small but the matrices are far from their mean. We
have selected the case where A1 = diag(1, 1/10, 1/100, 1/1000, 1/10000) and
the matrices Ai, for 2 6 i 6 5 are obtained from A1 by applying a cyclic
permutation to the diagonal entries and by adding a positive definite matrix
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of norm 10−8. The value of the mean is close to the scalar matrix σI, with
σ = 10−11/5. It is interesting to observe that with the value ϑ = 1/k = 1/5,
which is optimal in the commutative case, the iteration fails to converge,
while with the choice based on (9) one obtains convergence in just 4 itera-
tions.

5. Conclusions

We have introduced a new iteration depending on a parameter ϑ for com-
puting the Karcher mean of k symmetric positive definite matrices, proved
its global quadratic convergence in the commutative case and its local linear
convergence in the general case. We have provided a criterion for determining
a value of ϑ which guarantees local convergence. By means of a wide numer-
ical experimentation we have shown that choosing as initial approximation
the Cheap mean, this iteration converges quickly to the Karcher mean. An
adaptive version of this iteration is proposed and implemented in the Matrix
Means Toolbox [7].

There are still some questions that need some more investigation. The
convergence of the proposed algorithm relies on the global convergence of the
Cheap mean iteration and the convergence of iteration (5) to the Karcher
mean for X0 = Gcheap and with the value of ϑ chosen as in (9). Both facts
have been observed in a wide set of numerical experiments, however it would
be nice to confirm the results with a proof.

Another interesting question concerns the application to a radar problem
[11]. In that case the matrices to be averaged are Toeplitz matrices, while
their Karcher mean is not. It could be more meaningful, from a physical point
of view, to have an averaging procedure which yields a Toeplitz matrix. This
is a topic of future research.
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